IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v51y2017icp172-182.html
   My bibliography  Save this article

Focus on the current competitiveness of coal industry in China: Has the depression time gone?

Author

Listed:
  • Song, Zongyun
  • Niu, Dongxiao
  • Xiao, Xinli

Abstract

Since 2012 the coal industry in China has deeply fallen into depression. When entering into 2015, the tragedy continued. What the future of China's coal is has confused the scholars and managers. In order to evaluate the current competitiveness of coal industry in China, the diamond model is employed in present study to analyze the influence of six components on the competitiveness, namely factor condition, demand condition, related and support department, firm strategy, structure and rivalry, government, chance. The result of diamond model shows that the coal industry suffers from excessive capacity, low industry concentration ratio, low price and low investment, etc. The current competitiveness of coal industry in China is not satisfactory. Fortunately, China government has issued lists of policies to recover the industry. Besides, some strategic plans provide great chances for the recovery of coal industry. At the end of this paper, a gear model is applied to design a dynamic competitiveness improvement mechanism of coal industry in China. The model shows that the power comes from the coal industry itself is the main active force to impel the improvement of coal industry competitiveness, and the government, chance, related and support department play accessory but indispensable roles.

Suggested Citation

  • Song, Zongyun & Niu, Dongxiao & Xiao, Xinli, 2017. "Focus on the current competitiveness of coal industry in China: Has the depression time gone?," Resources Policy, Elsevier, vol. 51(C), pages 172-182.
  • Handle: RePEc:eee:jrpoli:v:51:y:2017:i:c:p:172-182
    DOI: 10.1016/j.resourpol.2016.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420716302628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2016.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Zhen Yu & Hu, Ji & Zuo, Jian, 2009. "Performance of wind power industry development in China: A DiamondModel study," Renewable Energy, Elsevier, vol. 34(12), pages 2883-2891.
    2. Nawrocki, Tomasz Leszek & Jonek-Kowalska, Izabela, 2016. "Assessing operational risk in coal mining enterprises – Internal, industrial and international perspectives," Resources Policy, Elsevier, vol. 48(C), pages 50-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Han & Hong Chen & Maggie-Anne Harvey & Eric Stemn & David Cliff, 2018. "Focusing on Coal Workers’ Lung Diseases: A Comparative Analysis of China, Australia, and the United States," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    2. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2018. "Coal miners’ livelihood vulnerability to economic shock: Multi-criteria assessment and policy implications," Energy Policy, Elsevier, vol. 114(C), pages 301-314.
    3. Wang, Wei & Wu, Fengping & Li, Cunfang, 2021. "Relationship between cross-regional transfer and the environment based on the coal enterprises in China," Resources Policy, Elsevier, vol. 73(C).
    4. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).
    5. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2018. "Quota allocation of coal overcapacity reduction among provinces in China," Energy Policy, Elsevier, vol. 116(C), pages 170-181.
    6. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    7. Yu, Haimiao & Chen, Hong & Long, Ruyin, 2017. "Mental fatigue, cognitive bias and safety paradox in chinese coal mines," Resources Policy, Elsevier, vol. 52(C), pages 165-172.
    8. Xia, Dan & Zhang, Ling, 2022. "Coupling coordination degree between coal production reduction and CO2 emission reduction in coal industry," Energy, Elsevier, vol. 258(C).
    9. Yan He & Yung-ho Chiu & Bin Zhang, 2020. "Prevaluating Technical Efficiency Gains From Potential Mergers and Acquisitions in China’s Coal Industry," SAGE Open, , vol. 10(3), pages 21582440209, July.
    10. Li, Cunfang & Li, Danping & Dong, Mei, 2019. "The spillage effect of the transfer behavior of coal resource-exhausted enterprises and science and technology projects," Resources Policy, Elsevier, vol. 62(C), pages 385-396.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    2. Zhao, Zhen-yu & Tian, Yu-xi & Zillante, George, 2014. "Modeling and evaluation of the wind power industry chain: A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 397-406.
    3. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    4. Zhao, Zhen-yu & Zhang, Shuang-ying & Zuo, Jian, 2011. "A critical analysis of the photovoltaic power industry in China – From diamond model to gear model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4963-4971.
    5. Zhang, Yan & Wang, Yu-Hao & Zhao, Xu & Tong, Rui-Peng, 2023. "Dynamic probabilistic risk assessment of emergency response for intelligent coal mining face system, case study: Gas overrun scenario," Resources Policy, Elsevier, vol. 85(PB).
    6. Jonek-Kowalska, Izabela & Nawrocki, Tomasz L., 2019. "Holistic fuzzy evaluation of operational risk in polish mining enterprises in a long-term and sectoral research perspective," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    7. Jonek-Kowalska, Izabela, 2018. "How do turbulent sectoral conditions sector influence the value of coal mining enterprises? Perspectives from the Central-Eastern Europe coal mining industry," Resources Policy, Elsevier, vol. 55(C), pages 103-112.
    8. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    9. Mao, Guozhu & Liu, Xi & Du, Huibin & Zuo, Jian & Wang, Linyuan, 2015. "Way forward for alternative energy research: A bibliometric analysis during 1994–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 276-286.
    10. Marius Korsnes, 2014. "Fragmentation, Centralisation and Policy Learning: An Example from China’s Wind Industry," Journal of Current Chinese Affairs - China aktuell, Institute of Asian Studies, GIGA German Institute of Global and Area Studies, Hamburg, vol. 43(3), pages 175-205.
    11. Lam, J.C.K. & Woo, C.K. & Kahrl, F. & Yu, W.K., 2013. "What moves wind energy development in China? Show me the money!," Applied Energy, Elsevier, vol. 105(C), pages 423-429.
    12. Meng Gao & Jicai Ning & Xiaoqing Wu, 2015. "Normal and Extreme Wind Conditions for Power at Coastal Locations in China," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-26, August.
    13. Zhao, Zhen-yu & Ling, Wen-jun & Zillante, George & Zuo, Jian, 2012. "Comparative assessment of performance of foreign and local wind turbine manufacturers in China," Renewable Energy, Elsevier, vol. 39(1), pages 424-432.
    14. Zhang, Pan, 2019. "Do energy intensity targets matter for wind energy development? Identifying their heterogeneous effects in Chinese provinces with different wind resources," Renewable Energy, Elsevier, vol. 139(C), pages 968-975.
    15. Li, Cun-bin & Li, Peng & Feng, Xia, 2014. "Analysis of wind power generation operation management risk in China," Renewable Energy, Elsevier, vol. 64(C), pages 266-275.
    16. Wang, Junqi & Cao, Hongjun, 2022. "Improving competitive strategic decisions of Chinese coal companies toward green transformation: A hybrid multi-criteria decision-making model," Resources Policy, Elsevier, vol. 75(C).
    17. Zhao, Zhen-Yu & Zuo, Jian & Fan, Lei-Lei & Zillante, George, 2011. "Impacts of renewable energy regulations on the structure of power generation in China – A critical analysis," Renewable Energy, Elsevier, vol. 36(1), pages 24-30.
    18. Komarov, Dragan & Stupar, Slobodan & Simonović, Aleksandar & Stanojević, Marija, 2012. "Prospects of wind energy sector development in Serbia with relevant regulatory framework overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2618-2630.
    19. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Drewniak, Sabina & Werle, Sebastian, 2023. "Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades," Energy, Elsevier, vol. 278(PB).
    20. Wu, Yunna & Li, Yang & Ba, Xi & Wang, Heping, 2013. "Post-evaluation indicator framework for wind farm planning in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 26-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:51:y:2017:i:c:p:172-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.