IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v84y2025ics0969698924005101.html
   My bibliography  Save this article

Platforms empower: Mining online reviews for supporting consumers decisions

Author

Listed:
  • Wu, Peng
  • Sun, Shiyong
  • Zhou, Ligang
  • Yao, Yao
  • Deveci, Muhammet

Abstract

With the progress of information technology, various platforms have emerged and rapidly developed. In product recommendation platforms, online reviews generated by consumers, as a key source of information, exert a substantial influence on purchasing decisions made by consumers. Although prior research has made some progress in this field, there is still a lack of exploration on the types of reviews information, the sentiment tendencies, and consumer decision-making behavior. Guided by text mining techniques and behavioral decision theory, this paper develops a heterogeneous data-driven decision-support model to more comprehensively extract information from online reviews and gain insights into consumer purchasing behavior. To handle the heterogeneity of online reviews, sentiment analysis is conducted to convert unstructured text data into sentiment values with structurization. Thereafter, a three-stage heterogeneous data aggregation framework is developed to define overall evaluation by fusing unstructured text reviews and structured star ratings. After defining a new attribute called word-of-mouth effect (WoME) based on interactive behavior data (such as views, likes and replies), we present a product ranking method by integrating regret theory and the logarithmic TODIM (LogTODIM) method. Furthermore, a case study is presented that evaluates the ranking of new energy vehicles (NEVs) on the Autohome platform, thereby verifying the feasibility of the proposed model.

Suggested Citation

  • Wu, Peng & Sun, Shiyong & Zhou, Ligang & Yao, Yao & Deveci, Muhammet, 2025. "Platforms empower: Mining online reviews for supporting consumers decisions," Journal of Retailing and Consumer Services, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:joreco:v:84:y:2025:i:c:s0969698924005101
    DOI: 10.1016/j.jretconser.2024.104214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698924005101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2024.104214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:84:y:2025:i:c:s0969698924005101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.