IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v82y2025ics0969698924003977.html
   My bibliography  Save this article

Predicting retail customers' distress in the finance industry: An early warning system approach

Author

Listed:
  • Beltman, Jaap
  • Machado, Marcos R.
  • Osterrieder, Joerg R.

Abstract

Predicting credit defaults is crucial for financial institutions to assess risk and make informed lending decisions. One of the most recent strategies banks and financial institutions have been testing to minimize losses that arise from credit default is the deployment of Early Warning Systems (EWS). By nature, this technique was primarily proposed and explored for commercial customers. However, this study proposes a comprehensive data-driven approach to model Early Warning Systems (EWS) for retail customers in the financial industry while using different Machine Learning (ML) models. We use Logistic Regression (LR), Gradient Boosting (GB), and Random Forest (RF) to classify customers' status, indicating the need to include potential default in a “watch list†. Additionally, we implement a fourth model (i.e., meta-model), whose predictions are based on the output of the other algorithms used (LR, GB, RF). Results indicate that the meta-model achieves higher accuracy than GB or any other individual model tested. From the management perspective, the findings indicate that a higher threshold for warning signals results in alerts closer to the overdue date, indicating increased sensitivity to emerging client deterioration. Conversely, lower thresholds focus more on the client's overall status. Furthermore, using the top ten features for training yields satisfactory overall results, but incorporating features beyond the top ten provides valuable supplementary information to be used in the decision-making process.

Suggested Citation

  • Beltman, Jaap & Machado, Marcos R. & Osterrieder, Joerg R., 2025. "Predicting retail customers' distress in the finance industry: An early warning system approach," Journal of Retailing and Consumer Services, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:joreco:v:82:y:2025:i:c:s0969698924003977
    DOI: 10.1016/j.jretconser.2024.104101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698924003977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2024.104101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:82:y:2025:i:c:s0969698924003977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.