IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v84y2019icp18-30.html
   My bibliography  Save this article

Common operation scheduling with general processing times: A branch-and-cut algorithm to minimize the weighted number of tardy jobs

Author

Listed:
  • Arbib, Claudio
  • Felici, Giovanni
  • Servilio, Mara

Abstract

Common operation scheduling (COS) problems arise in real-world applications, such as industrial processes of material cutting or component dismantling. In COS, distinct jobs may share operations, and when an operation is done, it is done for all the jobs that share it. We here propose a 0-1 LP formulation with exponentially many inequalities to minimize the weighted number of tardy jobs. Separation of inequalities is in NP, provided that an ordinary min Lmax scheduling problem is in P. We develop a branch-and-cut algorithm for two cases: one machine with precedence relation; identical parallel machines with unit operation times. In these cases separation is the constrained maximization of a submodular set function. A previous method is modified to tackle the two cases, and compared to our algorithm. We report on tests conducted on both industrial and artificial instances. For single machine and general processing times the new method definitely outperforms the other, extending in this way the range of COS applications.

Suggested Citation

  • Arbib, Claudio & Felici, Giovanni & Servilio, Mara, 2019. "Common operation scheduling with general processing times: A branch-and-cut algorithm to minimize the weighted number of tardy jobs," Omega, Elsevier, vol. 84(C), pages 18-30.
  • Handle: RePEc:eee:jomega:v:84:y:2019:i:c:p:18-30
    DOI: 10.1016/j.omega.2018.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316304856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, C. H. & Feiring, B. R. & Cheng, T. C. E., 1994. "The cutting stock problem -- a survey," International Journal of Production Economics, Elsevier, vol. 36(3), pages 291-305, October.
    2. M.I. Dessouky & B.J. Lageweg & J.K. Lenstra & S.L. van de Velde, 1990. "Scheduling identical jobs on uniform parallel machines," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 44(3), pages 115-123, September.
    3. E. L. Lawler, 1973. "Optimal Sequencing of a Single Machine Subject to Precedence Constraints," Management Science, INFORMS, vol. 19(5), pages 544-546, January.
    4. Arbib, Claudio & Marinelli, Fabrizio, 2017. "Maximum lateness minimization in one-dimensional bin packing," Omega, Elsevier, vol. 68(C), pages 76-84.
    5. Gleb Belov & Guntram Scheithauer, 2007. "Setup and Open-Stacks Minimization in One-Dimensional Stock Cutting," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 27-35, February.
    6. Maria Garcia de la Banda & Peter J. Stuckey, 2007. "Dynamic Programming to Minimize the Maximum Number of Open Stacks," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 607-617, November.
    7. Yanasse, Horacio Hideki, 1997. "On a pattern sequencing problem to minimize the maximum number of open stacks," European Journal of Operational Research, Elsevier, vol. 100(3), pages 454-463, August.
    8. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    9. Bennell, Julia A. & Soon Lee, Lai & Potts, Chris N., 2013. "A genetic algorithm for two-dimensional bin packing with due dates," International Journal of Production Economics, Elsevier, vol. 145(2), pages 547-560.
    10. Reinertsen, Harald & Vossen, Thomas W.M., 2010. "The one-dimensional cutting stock problem with due dates," European Journal of Operational Research, Elsevier, vol. 201(3), pages 701-711, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
    2. Polyakovskiy, Sergey & M’Hallah, Rym, 2021. "Just-in-time two-dimensional bin packing," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arbib, Claudio & Marinelli, Fabrizio & Pezzella, Ferdinando, 2012. "An LP-based tabu search for batch scheduling in a cutting process with finite buffers," International Journal of Production Economics, Elsevier, vol. 136(2), pages 287-296.
    2. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    3. Wuttke, David A. & Heese, H. Sebastian, 2018. "Two-dimensional cutting stock problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(1), pages 303-315.
    4. Polyakovskiy, Sergey & M’Hallah, Rym, 2021. "Just-in-time two-dimensional bin packing," Omega, Elsevier, vol. 102(C).
    5. Arbib, Claudio & Marinelli, Fabrizio & Pizzuti, Andrea, 2021. "Number of bins and maximum lateness minimization in two-dimensional bin packing," European Journal of Operational Research, Elsevier, vol. 291(1), pages 101-113.
    6. Polyakovskiy, Sergey & M’Hallah, Rym, 2018. "A hybrid feasibility constraints-guided search to the two-dimensional bin packing problem with due dates," European Journal of Operational Research, Elsevier, vol. 266(3), pages 819-839.
    7. Arbib, Claudio & Marinelli, Fabrizio, 2017. "Maximum lateness minimization in one-dimensional bin packing," Omega, Elsevier, vol. 68(C), pages 76-84.
    8. Anselmo Ramalho Pitombeira-Neto & Bruno de Athayde Prata, 2020. "A matheuristic algorithm for the one-dimensional cutting stock and scheduling problem with heterogeneous orders," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 178-192, April.
    9. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    10. Kallrath, Julia & Rebennack, Steffen & Kallrath, Josef & Kusche, Rüdiger, 2014. "Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges," European Journal of Operational Research, Elsevier, vol. 238(1), pages 374-389.
    11. Mateus Martin & Horacio Hideki Yanasse & Maristela O. Santos & Reinaldo Morabito, 2024. "Models for two-dimensional bin packing problems with customer order spread," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-27, August.
    12. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
    13. Matthias Kaltenbrunner & Maria Anna Huka & Manfred Gronalt, 2022. "Heuristic based approach for short term production planning in highly automated customer oriented pallet production," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1087-1098, April.
    14. Parreño, F. & Alvarez-Valdes, R., 2021. "Mathematical models for a cutting problem in the glass manufacturing industry," Omega, Elsevier, vol. 103(C).
    15. Kennedy A. G. Araújo & Tibérius O. Bonates & Bruno A. Prata & Anselmo R. Pitombeira-Neto, 2021. "Heterogeneous prestressed precast beams multiperiod production planning problem: modeling and solution methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 660-693, October.
    16. Keehoon Kwon & Doyeong Kim & Sunkuk Kim, 2021. "Cutting Waste Minimization of Rebar for Sustainable Structural Work: A Systematic Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    17. Yanasse, Horacio Hideki & Senne, Edson Luiz França, 2010. "The minimization of open stacks problem: A review of some properties and their use in pre-processing operations," European Journal of Operational Research, Elsevier, vol. 203(3), pages 559-567, June.
    18. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    19. Ramachandra, Girish & Elmaghraby, Salah E., 2006. "Sequencing precedence-related jobs on two machines to minimize the weighted completion time," International Journal of Production Economics, Elsevier, vol. 100(1), pages 44-58, March.
    20. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:84:y:2019:i:c:p:18-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.