IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v5y1977i2p215-220.html
   My bibliography  Save this article

Quantitative models for optimal rest period scheduling

Author

Listed:
  • Gentzler, GL
  • Khalil, TM
  • Sivazlian, BD

Abstract

Mathematical and simulation models studying work-rest schedules in a production process are developed to arrive at an optimal rest policy to maximize work output per unit time. A CSMP simulation study is used to test the sensitivity of the results for different specific cases.

Suggested Citation

  • Gentzler, GL & Khalil, TM & Sivazlian, BD, 1977. "Quantitative models for optimal rest period scheduling," Omega, Elsevier, vol. 5(2), pages 215-220.
  • Handle: RePEc:eee:jomega:v:5:y:1977:i:2:p:215-220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0305-0483(77)90104-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    2. Janiak, Adam & Kovalyov, Mikhail Y., 2006. "Scheduling in a contaminated area: A model and polynomial algorithms," European Journal of Operational Research, Elsevier, vol. 173(1), pages 125-132, August.
    3. Sawik, Tadeusz, 2010. "An integer programming approach to scheduling in a contaminated area," Omega, Elsevier, vol. 38(3-4), pages 179-191, June.
    4. A Janiak & M Y Kovalyov, 2008. "Scheduling jobs in a contaminated area: a model and heuristic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 977-987, July.
    5. Sheng Yu, 2015. "An optimal single-machine scheduling with linear deterioration rate and rate-modifying activities," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 242-252, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:5:y:1977:i:2:p:215-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.