IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v135y2025ics0305048325000313.html
   My bibliography  Save this article

Managing equitable contagious disease testing: A mathematical model for resource optimization

Author

Listed:
  • Ghasemi, Peiman
  • Ehmke, Jan Fabian
  • Bicher, Martin

Abstract

All nations in the world were under tremendous economic and logistical strain as a result of the advent of COVID-19. Early in the epidemic, getting COVID-19 diagnostic tests was a significant difficulty. Furthermore, logistical challenges arose from the restricted transportation infrastructure and disruptions in international supply chains in the distribution of these testing kits. In the face of such obstacles, it is critical to give patients' needs top priority in order to provide fair access to testing. In order to manage contagious disease testing, this work proposes a bi-objective and multi-period mathematical model with an emphasis on mobile tester route plans and testing resource allocation. In order to optimize patient scores and reduce the likelihood of patients going untreated, the suggested team orienteering model takes into account issues like resource limitations, geographic clustering, and testing capacity limitations. To this aim, we present a comparison between quarantine and non-quarantine scenarios, introduce an equitable categorization based on disease backgrounds into “standard” and “risky” groups, and cluster geographical locations according to average age and contact rate. We use a Multi-Objective Variable Neighborhood Search (MOVNS) and a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to solve our problem. Due to the superiority of MOVNS, it is applied to a case study in Vienna, Austria. The results demonstrate that, over the course of several weeks, the average number of unserved risky patients in the prioritizing scenario is consistently lower than the usual number of patients. In the absence of prioritization, the average number of high-risk patients who remain untreated rises sharply and exceeds that of regular patients, though. Furthermore, it is clear that waiting times are greatly impacted by demand volume when comparing scenarios with and without quarantine.

Suggested Citation

  • Ghasemi, Peiman & Ehmke, Jan Fabian & Bicher, Martin, 2025. "Managing equitable contagious disease testing: A mathematical model for resource optimization," Omega, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:jomega:v:135:y:2025:i:c:s0305048325000313
    DOI: 10.1016/j.omega.2025.103305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048325000313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2025.103305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:135:y:2025:i:c:s0305048325000313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.