IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v134y2025ics030504832500026x.html
   My bibliography  Save this article

Enhanced efficiency assessment in manufacturing: Leveraging machine learning for improved performance analysis

Author

Listed:
  • Guillen, Maria D.
  • Charles, Vincent
  • Aparicio, Juan

Abstract

This paper introduces EATBoosting, a novel application of gradient tree boosting within the Data Envelopment Analysis (DEA) framework, designed to address undesirable outputs in printed circuit board (PCB) manufacturing. Recognizing the challenge of balancing desirable and undesirable outputs in efficiency assessments, our approach leverages machine learning to enhance the discriminatory power of traditional DEA models, facilitating more precise efficiency estimations. By integrating gradient tree boosting, EATBoosting optimizes the handling of complex data patterns and maximizes accuracy in predicting production functions, thus improving upon the deterministic nature of conventional DEA and Free Disposal Hull methods. The practicality of our approach is demonstrated through its application to a PCB assembly process, highlighting its capacity to discern subtle inefficiencies that traditional methods might overlook. This methodology not only enriches the analytical toolkit available for operational efficiency analysis but also sets a precedent for incorporating advanced machine learning techniques in performance evaluation across various industries. Looking forward, the continued integration of such innovative methods promises to revolutionize efficiency analysis, making it more adaptive to complex industrial challenges and more reflective of real-world production dynamics. This work not only broadens the scope of DEA applications but also invites further research into the integration of machine learning to refine performance measurement and management.

Suggested Citation

  • Guillen, Maria D. & Charles, Vincent & Aparicio, Juan, 2025. "Enhanced efficiency assessment in manufacturing: Leveraging machine learning for improved performance analysis," Omega, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:jomega:v:134:y:2025:i:c:s030504832500026x
    DOI: 10.1016/j.omega.2025.103300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504832500026X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2025.103300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:134:y:2025:i:c:s030504832500026x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.