IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v133y2025ics030504832400238x.html
   My bibliography  Save this article

Bilevel portfolio optimization with ordered pricing models

Author

Listed:
  • Benati, Stefano
  • Leal, Marina
  • Puerto, Justo

Abstract

Pricing problems include, among others, those of determining prices to charge for some services or products taking into account the customers’ reaction to such prices, as they could modify their purchases to avoid costs. Here we consider a pricing problem in the financial industry, namely, between the broker and the investor, as the former fixes the transaction costs on assets that are purchased by the latter. We assume that the broker defines a pricing policy based on ordering its fees and, depending on their amount, the investor either fully or partially owes fees. As a result, the function describing the total transaction costs is the ordered median and, to maximize its profit, the broker must determine the optimal weights of that function. In the model formulation, the broker must take into account investor reaction, resulting in a bilevel optimization model. In this model, the first level is the broker’s optimal choice that is followed in the second level by the investor optimal choice. We show how to formulate and solve the bilevel problem assuming two different sets of possible prices: discrete and continuous. In the former case, the nonlinear formulation is reduced into a mixed-integer linear model, while in the latter case, the resulting model remains as a mixed-integer nonlinear model. The solution obtained allows us to suggest some managerial insights of pricing policies, as broker profits and investor reaction to prices can be predicted and described. We will see that there is a trade-off between broker profits and investor risk, as pricing policies favorable to the broker increases the financial risks of the investor. This suggests the broker must exercise caution when implementing these policies, if investor gains and losses are of concern to the broker.

Suggested Citation

  • Benati, Stefano & Leal, Marina & Puerto, Justo, 2025. "Bilevel portfolio optimization with ordered pricing models," Omega, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:jomega:v:133:y:2025:i:c:s030504832400238x
    DOI: 10.1016/j.omega.2024.103274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504832400238X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:133:y:2025:i:c:s030504832400238x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.