IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v133y2025ics0305048324002287.html
   My bibliography  Save this article

A comprehensive methodology combining machine learning and unified robust stochastic programming for medical supply chain viability

Author

Listed:
  • Yılmaz, Ömer Faruk
  • Guan, Yongpei
  • Yılmaz, Beren Gürsoy
  • Yeni, Fatma Betül
  • Özçelik, Gökhan

Abstract

This paper addresses the medical kit allocation problem by employing a unified robust stochastic programming (URSP) approach to enhance medical supply chain (MSC) viability during pandemics. A two-stage methodology is developed to account for the inherent uncertainty of demand. It begins with a machine learning (ML) algorithm for contagion level prediction, which adjusts demand forecasts accordingly. Subsequently, the URSP approach incorporates risk aversion and various types of uncertainty by combining stochastic programming and robust optimization through an adjustable weight in the objective function. As a risk-aversion technique, conditional value-at-risk (CVaR) is employed to restrict shortage levels, providing a more realistic assessment of MSC resilience. To balance cost-effectiveness and robustness against a spectrum of uncertainties, the URSP method leverages the strengths of both stochastic programming and robust optimization. Taguchi's orthogonal array design is utilized to generate cases representing combinations of government policies aimed at mitigating potential risks during future epidemics or pandemics. The effectiveness of the proposed methodology is demonstrated through a comprehensive case study conducted in Türkiye, comparing several modeling approaches. Extensive experiments under different types of uncertainties are performed to assess MSC viability. Computational analysis reveals that the URSP approach provides more robust and computationally tractable solutions than the purely stochastic approach and offers more cost-effective kit allocation decisions than the purely robust approach by allowing decision-makers to fine-tune the robustness level based on their priorities. The insights indicate that integrating ML predictions with URSP significantly enhances MSC viability to withstand deep uncertainties during pandemics.

Suggested Citation

  • Yılmaz, Ömer Faruk & Guan, Yongpei & Yılmaz, Beren Gürsoy & Yeni, Fatma Betül & Özçelik, Gökhan, 2025. "A comprehensive methodology combining machine learning and unified robust stochastic programming for medical supply chain viability," Omega, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:jomega:v:133:y:2025:i:c:s0305048324002287
    DOI: 10.1016/j.omega.2024.103264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324002287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:133:y:2025:i:c:s0305048324002287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.