IDEAS home Printed from https://ideas.repec.org/a/eee/joinma/v22y2008i3p51-68.html
   My bibliography  Save this article

Improving predictive scoring models through model aggregation

Author

Listed:
  • Malthouse, Edward C.
  • Derenthal, Kirstin M.

Abstract

Scoring models predict responses to some contact that will be made in the future, helping an organization decide which customers to target. They are usually built from a single “proxy” contact from the past, for which responses have already been observed. This approach is risky because there could be differences between the proxy and future contact, and other exogenous factors could have changed. We propose averaging predictions from multiple scoring models and develop a rationale for this approach by showing under certain assumptions that the expected squared difference between the true responses to the future contact and the predicted values from the averaged model is less than or equal to the expected squared difference from a single previous contact. The improvement of the aggregated model over the single model increases as (1) the variation in effect sizes across contacts increases, (2) the number of averaged contacts increases, and (3) the variance of the effect estimates increases. We incorporate the effects of external factors in our model by weighting the coefficients with a general linear model (GLM). Using data from a retail catalog company and a nonprofit organization, we evaluate our model empirically by testing whether our assumptions hold, examine the extent of variation in slopes and predicted values across models build from various previous contacts, evaluate the amount of improvement over extant models in terms of prediction error and performance as measured by a gains table, and study how improvement depends on the number of averaged contacts. Conservative estimates suggest that our method could increase annual profits for the nonprofit organization by over a half-million dollars and tens of thousands of dollars for the small catalog company.

Suggested Citation

  • Malthouse, Edward C. & Derenthal, Kirstin M., 2008. "Improving predictive scoring models through model aggregation," Journal of Interactive Marketing, Elsevier, vol. 22(3), pages 51-68.
  • Handle: RePEc:eee:joinma:v:22:y:2008:i:3:p:51-68
    DOI: 10.1002/dir.20117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1094996808700148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1002/dir.20117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2004. "The 2003 ISMS Practice Prize Winner: Optimizing Rhenania's Direct Marketing Business Through Dynamic Multilevel Modeling (DMLM) in a Multicatalog-Brand Environment," Marketing Science, INFORMS, vol. 23(2), pages 192-206, June.
    2. Füsun F. Gönül & Frenkel Ter Hofstede, 2006. "How to Compute Optimal Catalog Mailing Decisions," Marketing Science, INFORMS, vol. 25(1), pages 65-74, 01-02.
    3. Jan Roelf Bult & Tom Wansbeek, 1995. "Optimal Selection for Direct Mail," Marketing Science, INFORMS, vol. 14(4), pages 378-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    2. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    3. G. A. Verhaert & D. Van Den Poel, 2012. "The Role of Seed Money and Threshold Size in Optimizing Fundraising Campaigns: Past Behavior Matters!," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/815, Ghent University, Faculty of Economics and Business Administration.
    4. Verhaert, Griet Alice & Van den Poel, Dirk, 2011. "Improving Campaign Success Rate by Tailoring Donation Requests along the Donor Lifecycle," Journal of Interactive Marketing, Elsevier, vol. 25(1), pages 51-63.
    5. Malthouse, Edward C. & Raman, Kalyan, 2013. "The Geometric Law of Annual Halving," Journal of Interactive Marketing, Elsevier, vol. 27(1), pages 28-35.
    6. Lee, Hyoung-joo & Shin, Hyunjung & Hwang, Seong-seob & Cho, Sungzoon & MacLachlan, Douglas, 2010. "Semi-Supervised Response Modeling," Journal of Interactive Marketing, Elsevier, vol. 24(1), pages 42-54.
    7. Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    9. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    10. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    2. Thomas, Suman Ann & Feng, Shanfei & Krishnan, Trichy V., 2015. "To retain? To upgrade? The effects of direct mail on regular donation behavior," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 48-63.
    3. Sarkar, Mainak & De Bruyn, Arnaud, 2021. "LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 80-95.
    4. Durango-Cohen, Elizabeth J., 2013. "Modeling contribution behavior in fundraising: Segmentation analysis for a public broadcasting station," European Journal of Operational Research, Elsevier, vol. 227(3), pages 538-551.
    5. De Bruyn, Arnaud & Viswanathan, Vijay & Beh, Yean Shan & Brock, Jürgen Kai-Uwe & von Wangenheim, Florian, 2020. "Artificial Intelligence and Marketing: Pitfalls and Opportunities," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 91-105.
    6. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    7. Feld, Sebastian & Frenzen, Heiko & Krafft, Manfred & Peters, Kay & Verhoef, Peter C., 2013. "The effects of mailing design characteristics on direct mail campaign performance," International Journal of Research in Marketing, Elsevier, vol. 30(2), pages 143-159.
    8. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.
    9. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    10. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    11. Thomas J. Steenburgh & Andrew Ainslie & Peder Hans Engebretson, 2003. "Massively Categorical Variables: Revealing the Information in Zip Codes," Marketing Science, INFORMS, vol. 22(1), pages 40-57, August.
    12. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    13. repec:dgr:rugsom:02f59 is not listed on IDEAS
    14. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    15. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    16. Danijel Bratina & Armand Faganel, 2023. "Using Supervised Machine Learning Methods for RFM Segmentation: A Casino Direct Marketing Communication Case," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 35(1), pages 7-22.
    17. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    18. Liu, Hongju & Pancras, Joseph & Houtz, Malcolm, 2015. "Managing Customer Acquisition Risk Using Co-operative Databases," Journal of Interactive Marketing, Elsevier, vol. 29(C), pages 39-56.
    19. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    20. Roberto Cominetti & José R. Correa & Thomas Rothvoß & Jaime San Martín, 2010. "Optimal Selection of Customers for a Last-Minute Offer," Operations Research, INFORMS, vol. 58(4-part-1), pages 878-888, August.
    21. Tat Chan & Naser Hamdi & Xiang Hui & Zhenling Jiang, 2022. "The Value of Verified Employment Data for Consumer Lending: Evidence from Equifax," Marketing Science, INFORMS, vol. 41(4), pages 795-814, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joinma:v:22:y:2008:i:3:p:51-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-interactive-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.