IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v36y2024ics2405851324000576.html
   My bibliography  Save this article

The role of news sentiment in salmon price prediction using deep learning

Author

Listed:
  • Ewald, Christian Oliver
  • Li, Yaoyu

Abstract

This paper employs deep learning models and sentiment analysis to predict salmon spot prices. Our data includes historical price data and sentiment scores from 2018 to 2022. We extract sentiment scores from salmon-related news headlines by using FinBERT and TextBlob. We begin with price prediction using only historical price data and then introduce sentiment scores to improve the prediction accuracy of deep learning models. We find that the prediction performance of deep learning models outperforms traditional prediction methods in the salmon market. Our primary hybrid CNN-LSTM model outperforms other deep learning models and traditional models. Additionally, deep learning models incorporating sentiment scores exhibit reduced prediction errors. Our findings confirm the value of sentiment information in improving forecasting performance. These findings highlight the effectiveness and robustness of our CNN-LSTM model combined with sentiment analysis for price prediction in the salmon market.

Suggested Citation

  • Ewald, Christian Oliver & Li, Yaoyu, 2024. "The role of news sentiment in salmon price prediction using deep learning," Journal of Commodity Markets, Elsevier, vol. 36(C).
  • Handle: RePEc:eee:jocoma:v:36:y:2024:i:c:s2405851324000576
    DOI: 10.1016/j.jcomm.2024.100438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851324000576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2024.100438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Price prediction; Deep learning; Sentiment analysis;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:36:y:2024:i:c:s2405851324000576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.