IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v9y1979i4p560-578.html
   My bibliography  Save this article

Convergence rates in the central limit theorem for stationary mixing sequences of random vectors

Author

Listed:
  • Hipp, Christian

Abstract

Uniform and nonuniform Berry-Esseen bounds are given for strongly mixing and uniformly mixing stationary sequences of random vectors. The proofs are based on the classical Bernstein procedure.

Suggested Citation

  • Hipp, Christian, 1979. "Convergence rates in the central limit theorem for stationary mixing sequences of random vectors," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 560-578, December.
  • Handle: RePEc:eee:jmvana:v:9:y:1979:i:4:p:560-578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(79)90058-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krätschmer, Volker & Zähle, Henryk, 2011. "Sensitivity of risk measures with respect to the normal approximation of total claim distributions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 335-344.
    2. Ling Peng & Yan Zhu & Wenxuan Zhong, 2023. "Lasso regression in sparse linear model with $$\varphi $$ φ -mixing errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:9:y:1979:i:4:p:560-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.