IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i8p1529-1538.html
   My bibliography  Save this article

Variable screening in predicting clinical outcome with high-dimensional microarrays

Author

Listed:
  • Shao, Jun
  • Chow, Shein-Chung

Abstract

Statistical modeling is an important area of biomarker research of important genes for new drug targets, drug candidate validation, disease diagnoses, personalized treatment, and prediction of clinical outcome of a treatment. A widely adopted technology is the use of microarray data that are typically very high dimensional. After screening chromosomes for relative genes using methods such as quantitative trait locus mapping, there may still be a few thousands of genes related to the clinical outcome of interest. On the other hand, the sample size (the number of subjects) in a clinical study is typically much smaller. Under the assumption that only a few important genes are actually related to the clinical outcome, we propose a variable screening procedure to eliminate genes having negligible effects on the clinical outcome. Once the dimension of microarray data is reduced to a manageable number relative to the sample size, one can select a final set of genes via a well-known variable selection method such as the cross-validation. We establish the asymptotic consistency of the proposed variable screening procedure. Some simulation results are also presented.

Suggested Citation

  • Shao, Jun & Chow, Shein-Chung, 2007. "Variable screening in predicting clinical outcome with high-dimensional microarrays," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1529-1538, September.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1529-1538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00235-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. C. Van Houwelingen, 2001. "Shrinkage and Penalized Likelihood as Methods to Improve Predictive Accuracy," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(1), pages 17-34, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, June & Kulasekera, K.B., 2013. "Error covariance matrix estimation using ridge estimator," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 257-264.
    2. Luo, June, 2010. "The discovery of mean square error consistency of a ridge estimator," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 343-347, March.
    3. Luo, June, 2012. "Asymptotic efficiency of ridge estimator in linear and semiparametric linear models," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 58-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Castro-Martín & Maria del Mar Rueda & Ramón Ferri-García, 2020. "Inference from Non-Probability Surveys with Statistical Matching and Propensity Score Adjustment Using Modern Prediction Techniques," Mathematics, MDPI, vol. 8(6), pages 1-19, June.
    2. Aris Perperoglou, 2011. "Fitting survival data with penalized Poisson regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(4), pages 451-462, November.
    3. Ricci, Lila, 2010. "Adjusted R-squared type measure for exponential dispersion models," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1365-1368, September.
    4. Muhammad Amin & Lixin Song & Milton Abdul Thorlie & Xiaoguang Wang, 2015. "SCAD-penalized quantile regression for high-dimensional data analysis and variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 212-235, August.
    5. Dunkler, Daniela & Sauerbrei, Willi & Heinze, Georg, 2016. "Global, Parameterwise and Joint Shrinkage Factor Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i08).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1529-1538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.