IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i6p1160-1179.html
   My bibliography  Save this article

Locally best rotation-invariant rank tests for modal location

Author

Listed:
  • Tsai, Ming-Tien
  • Sen, Pranab Kumar

Abstract

For a general class of unipolar, rotationally symmetric distributions on the multi-dimensional unit spherical surface, a characterization of locally best rotation-invariant test statistics is exploited in the construction of locally best rotation-invariant rank tests for modal location. Allied statistical distributional problems are appraised, and in the light of these assessments, asymptotic relative efficiency of a class of rotation-invariant rank tests (with respect to some of their parametric counterparts) is studied. Finite sample permutational distributional perspectives are also appraised.

Suggested Citation

  • Tsai, Ming-Tien & Sen, Pranab Kumar, 2007. "Locally best rotation-invariant rank tests for modal location," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1160-1179, July.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:6:p:1160-1179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00008-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ted & Tsai, Ming-Tien, 2003. "Asymptotic relative Pitman efficiency in group models," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 395-415, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Ming-Tien, 2009. "Asymptotically efficient two-sample rank tests for modal directions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 445-458, March.
    2. Davy Paindaveine & Thomas Verdebout, 2013. "Optimal Rank-Based Tests for the Location Parameter of a Rotationally Symmetric Distribution on the Hypersphere," Working Papers ECARES ECARES 2013-36, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsai, Ming-Tien, 2009. "Asymptotically efficient two-sample rank tests for modal directions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 445-458, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:6:p:1160-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.