IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i4p813-828.html
   My bibliography  Save this article

Maximum likelihood factor analysis with rank-deficient sample covariance matrices

Author

Listed:
  • Robertson, Donald
  • Symons, James

Abstract

This paper characterises completely the circumstances in which maximum likelihood estimation of the factor model is feasible when the sample covariance matrix is rank deficient. This situation will arise when the number of variables exceeds the number of observations.

Suggested Citation

  • Robertson, Donald & Symons, James, 2007. "Maximum likelihood factor analysis with rank-deficient sample covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 813-828, April.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:813-828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00210-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    2. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    3. Amèvi Rocard Kouwoaye, 2019. "Trade tax reforms and poverty in developing countries: Why do some countries benefit and others lose?," WIDER Working Paper Series wp-2019-66, World Institute for Development Economic Research (UNU-WIDER).
    4. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    5. Sundberg, Rolf & Feldmann, Uwe, 2016. "Exploratory factor analysis—Parameter estimation and scores prediction with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 49-59.
    6. Giovanni Forchini & Bin Peng, 2016. "A Conditional Approach to Panel Data Models with Common Shocks," Econometrics, MDPI, vol. 4(1), pages 1-12, January.
    7. Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
    8. Gilhooly, Robert & Weale, Martin & Wieladek, Tomasz, 2015. "Estimation of short dynamic panels in the presence of cross-sectional dependence and dynamic eterogeneity," Discussion Papers 38, Monetary Policy Committee Unit, Bank of England.

    More about this item

    Keywords

    Factor analysis Maximum likelihood;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:813-828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.