IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i4p895-924.html
   My bibliography  Save this article

The hyper-Dirichlet process and its discrete approximations: The butterfly model

Author

Listed:
  • Asci, C.
  • Nappo, G.
  • Piccioni, M.

Abstract

The aim of this paper is the study of some random probability distributions, called hyper-Dirichlet processes. In the simplest situation considered in the paper these distributions charge the product of three sample spaces, with the property that the first and the last component are independent conditional to the middle one. The law of the marginals on the first two and on the last two components are specified to be Dirichlet processes with the same marginal parameter measure on the common second component. The joint law is then obtained as the hyper-Markov combination, introduced in [A.P. Dawid, S.L. Lauritzen, Hyper-Markov laws in the statistical analysis of decomposable graphical models, Ann. Statist. 21 (3) (1993) 1272-1317], of these two Dirichlet processes. The processes constructed in this way in fact are in fact generalizations of the hyper-Dirichlet laws on contingency tables considered in the above paper. Our main result is the convergence to the hyper-Dirichlet process of the sequence of hyper-Dirichlet laws associated to finer and finer "discretizations" of the two parameter measures, which is proved by means of a suitable coupling construction.

Suggested Citation

  • Asci, C. & Nappo, G. & Piccioni, M., 2006. "The hyper-Dirichlet process and its discrete approximations: The butterfly model," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 895-924, April.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:4:p:895-924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00152-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:4:p:895-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.