IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i1p79-102.html
   My bibliography  Save this article

Latent models for cross-covariance

Author

Listed:
  • Wegelin, Jacob A.
  • Packer, Asa
  • Richardson, Thomas S.

Abstract

We consider models for the covariance between two blocks of variables. Such models are often used in situations where latent variables are believed to present. In this paper we characterize exactly the set of distributions given by a class of models with one-dimensional latent variables. These models relate two blocks of observed variables, modeling only the cross-covariance matrix. We describe the relation of this model to the singular value decomposition of the cross-covariance matrix. We show that, although the model is underidentified, useful information may be extracted. We further consider an alternative parameterization in which one latent variable is associated with each block, and we extend the result to models with r-dimensional latent variables.

Suggested Citation

  • Wegelin, Jacob A. & Packer, Asa & Richardson, Thomas S., 2006. "Latent models for cross-covariance," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 79-102, January.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:1:p:79-102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00229-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ogasawara, Haruhiko, 2007. "Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1726-1750, October.
    2. Haruhiko Ogasawara, 2009. "Asymptotic expansions in the singular value decomposition for cross covariance and correlation under nonnormality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 995-1017, December.
    3. Philip Yu & Paul Lee & W. Wan, 2013. "Factor analysis for paired ranked data with application on parent–child value orientation preference data," Computational Statistics, Springer, vol. 28(5), pages 1915-1945, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:1:p:79-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.