IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v95y2005i1p107-118.html
   My bibliography  Save this article

Efficiency of test for independence after Box-Cox transformation

Author

Listed:
  • Freeman, Jade
  • Modarres, Reza

Abstract

We consider the efficiency and the power of the normal theory test for independence after a Box-Cox transformation. We obtain an expression for the correlation between the variates after a Box-Cox transformation in terms of the correlation on the normal scale. We discuss the efficiency of test of independence after a Box-Cox transformation and show that for the family considered it is always more efficient to conduct the test of independence based on Pearson correlation coefficient after transformation to normality. Power of test of independence before and after a Box-Cox transformation is studied for a finite sample size using Monte Carlo simulation. Our results show that we can increase the power of the normal-theory test for independence after estimating the transformation parameter from the data. The procedure has application for generating non-negative random variables with prescribed correlation.

Suggested Citation

  • Freeman, Jade & Modarres, Reza, 2005. "Efficiency of test for independence after Box-Cox transformation," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 107-118, July.
  • Handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:107-118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00160-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:107-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.