IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v88y2004i1p47-60.html
   My bibliography  Save this article

Some properties and characterizations for generalized multivariate Pareto distributions

Author

Listed:
  • Yeh, Hsiaw-Chan

Abstract

In this paper, several distributional properties and characterization theorems of the generalized multivariate Pareto distributions are studied. It is found that the multivariate Pareto distributions have many mixture properties. They are mixed either by geometric, Weibull, or exponential variables. The multivariate Pareto, MP(k)(I), MP(k)(II), and MP(k)(IV) families have closure property under finite sample minima. The MP(k)(III) family is closed under both geometric minima and geometric maxima. Through the geometric minima procedure, one characterization theorem for MP(k)(III) distribution is developed. Moreover, the MP(k)(III) distribution is proved as the limit multivariate distribution under repeated geometric minimization. Also, a characterization theorem for the homogeneous MP(k)(IV) distribution via the weighted minima among the ordered coordinates is developed. Finally, the MP(k)(II) family is shown to have the truncation invariant property.

Suggested Citation

  • Yeh, Hsiaw-Chan, 2004. "Some properties and characterizations for generalized multivariate Pareto distributions," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 47-60, January.
  • Handle: RePEc:eee:jmvana:v:88:y:2004:i:1:p:47-60
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00061-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeh, Hsiaw-Chan, 2002. "Six multivariate Zipf distributions and their related properties," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 131-141, January.
    2. Yeh, H. C., 1994. "Some Properties of the Homogeneous Multivariate Pareto (IV) Distribution," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 46-53, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    2. Yeh, Hsiaw-Chan, 2009. "Multivariate semi-Weibull distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1634-1644, September.
    3. Yeh, Hsiaw-Chan, 2010. "Multivariate semi-logistic distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 893-908, April.
    4. Yeh, Hsiaw-Chan, 2007. "Three general multivariate semi-Pareto distributions and their characterizations," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1305-1319, July.
    5. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    6. Arendarczyk, Marek & Kozubowski, Tomasz. J. & Panorska, Anna K., 2018. "The joint distribution of the sum and maximum of dependent Pareto risks," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 136-156.
    7. Raluca Vernic, 2011. "Tail Conditional Expectation for the Multivariate Pareto Distribution of the Second Kind: Another Approach," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 121-137, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddana Amrutha & Kozubowski Tomasz J., 2014. "Discrete Pareto Distributions," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 143-156, December.
    2. Yeh, Hsiaw-Chan, 2002. "Six multivariate Zipf distributions and their related properties," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 131-141, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:88:y:2004:i:1:p:47-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.