Screening among Multivariate Normal Data
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Khatri, C. G., 1979. "Characterizations of multivariate normality II. Through linear regressions," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 589-598, December.
- Khatri, C. G. & Rao, C. Radhakrishna, 1987. "Test for a specified signal when the noise covariance matrix is unknown," Journal of Multivariate Analysis, Elsevier, vol. 22(2), pages 177-188, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mady, Afaf M., 2006. "Some extensions of Langenberg model for clinical trials with delayed observations normally distributed responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1384-1392, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nagao, Hisao & Srivastava, M. S., 2002. "Fixed Width Confidence Region for the Mean of a Multivariate Normal Distribution," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 259-273, May.
- Srivastava, Muni S. & von Rosen, Dietrich, 1998. "Outliers in Multivariate Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 195-208, May.
- Díaz-García, José A. & González-Farías, Graciela, 2005. "Singular random matrix decompositions: Jacobians," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 296-312, April.
- Kubokawa, T. & Srivastava, M. S., 2001. "Robust Improvement in Estimation of a Mean Matrix in an Elliptically Contoured Distribution," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 138-152, January.
- Mukhopadhyay, N., 1999. "Second-Order Properties of a Two-Stage Fixed-Size Confidence Region for the Mean Vector of a Multivariate Normal Distribution," Journal of Multivariate Analysis, Elsevier, vol. 68(2), pages 250-263, February.
- Díaz-García, José A. & Jáimez, Ramón Gutierrez & Mardia, Kanti V., 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 73-87, October.
More about this item
Keywords
hypergeometric function in matrix argument; indifference zone approach; eigenvalue; least favorable configuration; multivariate normal; probability of a correct screening; radar signal processing; ranking and selection; subset selection approach;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:69:y:1999:i:1:p:10-29. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.