IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v59y1996i2p282-307.html
   My bibliography  Save this article

Mixtures of Global and Local Edgeworth Expansions and Their Applications

Author

Listed:
  • Babu, Gutti Jogesh
  • Bai, Z. D.

Abstract

Edgeworth expansions which are local in one coordinate and global in the rest of the coordinates are obtained for sums of independent but not identically distributed random vectors. Expansions for conditional probabilities are deduced from these. Both lattice and continuous conditioning variables are considered. The results are then applied to derive Edgeworth expansions for bootstrap distributions, for Bayesian bootstrap distribution, and for the distributions of statistics based on samples from finite populations. This results in a unified theory of Edgeworth expansions for resampling procedures. The Bayesian bootstrap is shown to be second order correct for smooth positive "priors," whenever the third cumulant of the "prior" is equal to the third power of its standard deviation. Similar results are established for weighted bootstrap when the weights are constructed from random variables with a lattice distribution.

Suggested Citation

  • Babu, Gutti Jogesh & Bai, Z. D., 1996. "Mixtures of Global and Local Edgeworth Expansions and Their Applications," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 282-307, November.
  • Handle: RePEc:eee:jmvana:v:59:y:1996:i:2:p:282-307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90066-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrice Bertail & Emilie Chautru & Stephan Clémençon, 2017. "Empirical Processes in Survey Sampling with (Conditional) Poisson Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 97-111, March.
    2. L. C. Zhao & C. Q. Wu & Q. Wang, 2004. "Berry–Esseen Bound for a Sample Sum from a Finite Set of Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 17(3), pages 557-572, July.
    3. Ibrahim Bin Mohamed & Sherzod M. Mirakhmedov, 2016. "Approximation by Normal Distribution for a Sample Sum in Sampling Without Replacement from a Finite Population," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 188-220, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:59:y:1996:i:2:p:282-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.