IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v59y1996i2p187-205.html
   My bibliography  Save this article

Multivariate Locally Weighted Polynomial Fitting and Partial Derivative Estimation

Author

Listed:
  • Lu, Zhan-Qian

Abstract

Nonparametric regression estimator based on locally weighted least squares fitting has been studied by Fan and Ruppert and Wand. The latter paper also studies, in the univariate case, nonparametric derivative estimators given by a locally weighted polynomial fitting. Compared with traditional kernel estimators, these estimators are often of simpler form and possess some better properties. In this paper, we develop current work on locally weighted regression and generalize locally weighted polynomial fitting to the estimation of partial derivatives in a multivariate regression context. Specifically, for both the regression and partial derivative estimators we prove joint asymptotic normality and derive explicit asymptotic expansions for their conditional bias and conditional convariance matrix (given observations of predictor variables) in each of the two important cases of local linear fit and local quadratic fit.

Suggested Citation

  • Lu, Zhan-Qian, 1996. "Multivariate Locally Weighted Polynomial Fitting and Partial Derivative Estimation," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 187-205, November.
  • Handle: RePEc:eee:jmvana:v:59:y:1996:i:2:p:187-205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90060-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan-Qian Lu, 1999. "Multivariate Local Polynomial Fitting for Martingale Nonlinear Regression Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(4), pages 691-706, December.
    2. Giordano, Francesco & Parrella, Maria Lucia, 2016. "Bias-corrected inference for multivariate nonparametric regression: Model selection and oracle property," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 71-93.
    3. Francesco Giordano & Maria Lucia Parrella, 2014. "Bias-corrected inference for multivariate nonparametric regression: model selection and oracle property," Working Papers 3_232, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    4. Charnigo, Richard & Feng, Limin & Srinivasan, Cidambi, 2015. "Nonparametric and semiparametric compound estimation in multiple covariates," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 179-196.
    5. Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2020. "Nonparametric regression estimate with Berkson Laplace measurement error," Statistics & Probability Letters, Elsevier, vol. 166(C).
    6. Francesco Giordano & Soumendra Nath Lahiri & Maria Lucia Parrella, 2014. "GRID for model structure discovering in high dimensional regression," Working Papers 3_231, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    7. Lee, Ji Hyung & Park, Byoung G., 2023. "Nonparametric identification and estimation of the extended Roy model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1087-1113.
    8. Zhang, Wenyang & Lee, Sik-Yum, 2000. "Variable Bandwidth Selection in Varying-Coefficient Models," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 116-134, July.
    9. Fruth, J. & Roustant, O. & Kuhnt, S., 2019. "Support indices: Measuring the effect of input variables over their supports," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 17-27.
    10. Chan Shen, 2019. "Recursive Differencing for Estimating Semiparametric Models," Departmental Working Papers 201903, Rutgers University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:59:y:1996:i:2:p:187-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.