IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v59y1996i2p166-186.html
   My bibliography  Save this article

On a Constrained Optimal Rule for Classification with Unknown Prior Individual Group Membership

Author

Listed:
  • Kim, Hea-Jung

Abstract

We describe a formal approach to constructing the optimal classification rule for classification analysis with unknown prior probabilities ofKmultivariate normal populations membership. This is done by suggesting a balanced design for the classification experiment and by constructing the optimal rule under the balanced design condition. The rule is characterized by a constrained minimization of total risk of misclassification; the constraint of the rule is constructed by a process of equalization among expected utilities ofKpopulation conditional densities. The efficacy of the suggested rule is examined through numerical studies. This indicates that dramatic gains in the accuracy of classification result can be achieved in the case where little is known about the relative population sizes.

Suggested Citation

  • Kim, Hea-Jung, 1996. "On a Constrained Optimal Rule for Classification with Unknown Prior Individual Group Membership," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 166-186, November.
  • Handle: RePEc:eee:jmvana:v:59:y:1996:i:2:p:166-186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90059-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:59:y:1996:i:2:p:166-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.