IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v49y1994i2p242-254.html
   My bibliography  Save this article

A Simple Wavelet Approach to Nonparametric Regression from Recursive Partitioning Schemes

Author

Listed:
  • Engel, J.

Abstract

Rates of convergence for nonparametric regression estimators based on recursive partitioning schemes are derived. The central idea is to consider the tree-structured regression estimator as a wavelet estimator based on the orthogonal system of Haar functions. A locally adaptive data-driven smoothing method is proposed and its performance is studied.

Suggested Citation

  • Engel, J., 1994. "A Simple Wavelet Approach to Nonparametric Regression from Recursive Partitioning Schemes," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 242-254, May.
  • Handle: RePEc:eee:jmvana:v:49:y:1994:i:2:p:242-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(84)71024-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Autin, Florent & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Combining thresholding rules: a new way to improve the performance of wavelet estimators," LIDAM Discussion Papers ISBA 2011021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Autin, F. & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Ideal denoising within a family of tree-structured wavelet estimators," LIDAM Discussion Papers ISBA 2011002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Joachim Engel, 1997. "The multiresolution histogram," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 46(1), pages 41-57, January.
    4. F. Autin & J.-M. Freyermuth & R. von Sachs, 2012. "Combining thresholding rules: a new way to improve the performance of wavelet estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 905-922, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:49:y:1994:i:2:p:242-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.