IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v3y1973i1p117-124.html
   My bibliography  Save this article

A generalization of the growth curve model which allows missing data

Author

Listed:
  • Kleinbaum, David G.

Abstract

This study presents methods for estimating and testing hypotheses about linear functions of the unknown parameters in a generalization of the growth curve model which allows missing data. The estimators proposed are best asymptotically normal (BAN). A testing method for large samples is described which uses a test criterion given in general form by Wald. The asymptotic null distribution of the test statistic is a central chi-square variable. A BAN estimator of a linear vector function of the unknown parameters of the expectation model and consistent estimators of the variance-covariance parameters are required for computation.

Suggested Citation

  • Kleinbaum, David G., 1973. "A generalization of the growth curve model which allows missing data," Journal of Multivariate Analysis, Elsevier, vol. 3(1), pages 117-124, March.
  • Handle: RePEc:eee:jmvana:v:3:y:1973:i:1:p:117-124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(73)90015-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gwowen Shieh & Jack Lee, 2002. "Bayesian Prediction Analysis for Growth Curve Model Using Noninformative Priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 324-337, June.
    2. Kakizawa, Yoshihide, 2009. "Third-order power comparisons for a class of tests for multivariate linear hypothesis under general distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 473-496, March.
    3. Fulya Gokalp Yavuz & Olcay Arslan, 2018. "Linear mixed model with Laplace distribution (LLMM)," Statistical Papers, Springer, vol. 59(1), pages 271-289, March.
    4. James Algina & Stephen F. Olejnik, 1982. "Multiple Group Time-Series Design," Evaluation Review, , vol. 6(2), pages 203-232, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:3:y:1973:i:1:p:117-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.