IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v38y1991i2p319-332.html
   My bibliography  Save this article

Convergence of weighted sums of random functions in D[0, 1]

Author

Listed:
  • Daffer, Peter Z.

Abstract

Conditions are investigated which imply the tightness of certain weighted sums [Sigma]i = 1kn aniXi of random functions (Xn) taking values in D([0, 1]; E), where E is a separable Banach space. Improved weak laws of large numbers result as corollaries. Examples are presented to clarify the relative strengths of the moment conditions and their relationship to tightness and the strong law of large numbers. A tightness condition is defined using a certain class of sets measurable in the Skorokhod J1-topology, which yields J1-tightness of sequences of weighted sums. As a consequence, tightness of a sequence (Xn) in the Skorokhod M1-topology is used to obtain J1-tightness of a sequence () of averages and a strong law of large numbers in D(R+).

Suggested Citation

  • Daffer, Peter Z., 1991. "Convergence of weighted sums of random functions in D[0, 1]," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 319-332, August.
  • Handle: RePEc:eee:jmvana:v:38:y:1991:i:2:p:319-332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(91)90049-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thuan, Nguyen Tran & Quang, Nguyen Van, 2016. "Negative association and negative dependence for random upper semicontinuous functions, with applications," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 44-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:38:y:1991:i:2:p:319-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.