IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v30y1989i2p167-180.html
   My bibliography  Save this article

On the convergence of finite linear predictors of stationary processes

Author

Listed:
  • Pourahmadi, Mohsen

Abstract

It is shown that the finite linear least-squares predictor of a multivariate stationary process converges to its Kolmogorov-Wiener predictor at an exponential rate, provided that the entries of its spectral density matrix are smooth functions. Also, the same rate of convergence holds for the partial sums of the Kolmogorov-Wiener predictor.

Suggested Citation

  • Pourahmadi, Mohsen, 1989. "On the convergence of finite linear predictors of stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 167-180, August.
  • Handle: RePEc:eee:jmvana:v:30:y:1989:i:2:p:167-180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(89)90033-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raymond Cheng & Charles B. Harris, 2015. "Mixed-Norm Spaces and Prediction of SαS Moving Averages," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 853-875, November.
    2. Datta Gupta, Syamantak & Mazumdar, Ravi R. & Glynn, Peter, 2013. "On the convergence of the spectrum of finite order approximations of stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:30:y:1989:i:2:p:167-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.