IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v27y1988i1p91-104.html
   My bibliography  Save this article

Conditionally ordered distributions

Author

Listed:
  • Block, Henry W.
  • Sampson, Allan R.

Abstract

The concepts of conditionally more positively quadrant dependent, and conditionally more dispersed are introduced and studied. Based on these two concepts, new conditions are given for multivariate cdfs F and G so that EFh(X) >= EGh(X) for suitable h(X). Special cases include the multivariate normal distribution and elliptically contoured distributions. Conditional positive and negative dependence concepts as well as applications to the Farlie-Gumbel-Morgenstern distribution are also considered.

Suggested Citation

  • Block, Henry W. & Sampson, Allan R., 1988. "Conditionally ordered distributions," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 91-104, October.
  • Handle: RePEc:eee:jmvana:v:27:y:1988:i:1:p:91-104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(88)90118-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Xiaoqing & Qiu, Guoxin & Hu, Taizhong, 2016. "Stochastic orderings for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 83-88.
    2. Rüschendorf Ludger & Witting Julian, 2017. "VaR bounds in models with partial dependence information on subgroups," Dependence Modeling, De Gruyter, vol. 5(1), pages 59-74, January.
    3. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    4. Fernandez-Ponce, J. M. & Suarez-Llorens, A., 2003. "A multivariate dispersion ordering based on quantiles more widely separated," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 40-53, April.
    5. Arlotto, Alessandro & Scarsini, Marco, 2009. "Hessian orders and multinormal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2324-2330, November.
    6. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    7. Shaked, Moshe & Shanthikumar, J. George, 1997. "Supermodular Stochastic Orders and Positive Dependence of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 86-101, April.
    8. Mehdi Amiri & Narayanaswamy Balakrishnan & Abbas Eftekharian, 2022. "Hessian orderings of multivariate normal variance-mean mixture distributions and their applications in evaluating dependent multivariate risk portfolios," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 679-707, September.
    9. Samanthi, Ranadeera Gamage Madhuka & Wei, Wei & Brazauskas, Vytaras, 2016. "Ordering Gini indexes of multivariate elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 84-91.
    10. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    11. Dorinel Bastide & St'ephane Cr'epey, 2024. "Provisions and Economic Capital for Credit Losses," Papers 2401.07728, arXiv.org, revised Jan 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:27:y:1988:i:1:p:91-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.