IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v25y1988i1p111-118.html
   My bibliography  Save this article

Random walks on Z2n

Author

Listed:
  • Erdös, Paul
  • Chen, Robert W.

Abstract

For each positive integer n >= 1, let Z2n be the direct product of n copies of Z2, i.e., Z2n = {(a1, a2, ..., an)[short parallel]ai = 0 or 1 for all I = 1, 2, ..., n} and let {Wtn}t>=0 be a random walk on Z2n such that P{W0n = A} = 2-n for all A's in Z2n and for all j = 0, 1, 2, ..., and all (a1, a2, ..., an)'s in Z2n. For each positive integer n >= 1, let Cn denote the covering time taken by the random walk Wtn on Z2n to cover Z2n, i.e., to visit every element of Z2n. In this paper, we prove that, among other results, P{except finitely many n, c2nln(2n)

Suggested Citation

  • Erdös, Paul & Chen, Robert W., 1988. "Random walks on Z2n," Journal of Multivariate Analysis, Elsevier, vol. 25(1), pages 111-118, April.
  • Handle: RePEc:eee:jmvana:v:25:y:1988:i:1:p:111-118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(88)90156-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:25:y:1988:i:1:p:111-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.