IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v23y1987i2p303-311.html
   My bibliography  Save this article

Asymptotic optimality of multivariate linear hypothesis tests

Author

Listed:
  • Baringhaus, Ludwig

Abstract

The optimal exponential rate at which the Type II error probability of a multivariate linear hypothesis test can tend to zero while the Type I error probability is held fixed is given. The likelihood ratio test, the test of Hotelling and Lawley, the test of Bartlett, Nanda, and Pillai, and the test of Roy are shown to be asymptotically optimal in the sense that for each of these tests the exponential rate of convergence of the type II error probability attains the optimal value. Some other tests for the multivariate linear hypothesis are shown not to be asymptotically optimal.

Suggested Citation

  • Baringhaus, Ludwig, 1987. "Asymptotic optimality of multivariate linear hypothesis tests," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 303-311, December.
  • Handle: RePEc:eee:jmvana:v:23:y:1987:i:2:p:303-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(87)90159-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baringhaus, Ludwig & Gaigall, Daniel, 2017. "Hotelling’s T2 tests in paired and independent survey samples: An efficiency comparison," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 177-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:23:y:1987:i:2:p:303-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.