IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v21y1987i1p67-78.html
   My bibliography  Save this article

Asymptotic theory for robust principal components

Author

Listed:
  • Boente, Graciela

Abstract

The asymptotic distribution of the eigenvalues and eigenvectors of the robust scatter matrix proposed by R. Maronna in 1976 is given when the observations are from an ellipsoidal distribution. The elements of each characteristic vector are the coefficients of a robustified version of principal components. We give a definition for the asymptotic efficiency of these estimators and we evaluate their influence curve. The problem of maximizing the efficiency under a bound on the influence curve is solved. Numerically, we calibrate the optimal estimators under the multivariate normal distribution and we evaluate their sensitivity.

Suggested Citation

  • Boente, Graciela, 1987. "Asymptotic theory for robust principal components," Journal of Multivariate Analysis, Elsevier, vol. 21(1), pages 67-78, February.
  • Handle: RePEc:eee:jmvana:v:21:y:1987:i:1:p:67-78
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(87)90099-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    3. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    4. Jorge G. Adrover & Stella M. Donato, 2023. "Aspects of robust canonical correlation analysis, principal components and association," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 623-650, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:21:y:1987:i:1:p:67-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.