IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v21y1987i1p1-28.html
   My bibliography  Save this article

Validity of Edgeworth expansions of minimum contrast estimators for Gaussian ARMA processes

Author

Listed:
  • Taniguchi, Masanobu

Abstract

Let {Xt} be a Gaussian ARMA process with spectral density f[theta]([lambda]), where [theta] is an unknown parameter. To estimate [theta] we propose a minimum contrast estimation method which includes the maximum likelihood method and the quasi-maximum likelihood method as special cases. Let [theta][tau] be the minimum contrast estimator of [theta]. Then we derive the Edgewroth expansion of the distribution of [theta][tau] up to third order, and prove its valldity. By this Edgeworth expansion we can see that this minimum contrast estimator is always second-order asymptotically efficient in the class of second-order asymptotically median unbiased estimators. Also the third-order asymptotic comparisons among minimum contrast estimators will be discussed.

Suggested Citation

  • Taniguchi, Masanobu, 1987. "Validity of Edgeworth expansions of minimum contrast estimators for Gaussian ARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 21(1), pages 1-28, February.
  • Handle: RePEc:eee:jmvana:v:21:y:1987:i:1:p:1-28
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(87)90096-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
    2. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(3), pages 497-539, June.
    3. Peter M Robinson & Carlos Velasco, 2000. "Edgeworth Expansions for Spectral Density Estimates and Studentized Sample Mean - (Now published in Economic Theory, 17 (2001), pp.497-539," STICERD - Econometrics Paper Series 390, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Michael Creel & Dennis Kristensen, 2013. "Indirect Likelihood Inference (revised)," UFAE and IAE Working Papers 931.13, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:21:y:1987:i:1:p:1-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.