IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v207y2025ics0047259x25000132.html
   My bibliography  Save this article

Tree-structured Markov random fields with Poisson marginal distributions

Author

Listed:
  • Côté, Benjamin
  • Cossette, Hélène
  • Marceau, Etienne

Abstract

A new family of tree-structured Markov random fields for a vector of discrete counting random variables is introduced. According to the characteristics of the family, the marginal distributions of the Markov random fields are all Poisson with the same mean, and are untied from the strength or structure of their built-in dependence. This key feature is uncommon for Markov random fields and most convenient for applications purposes. The specific properties of this new family confer a straightforward sampling procedure and analytic expressions for the joint probability mass function and the joint probability generating function of the vector of counting random variables, thus granting computational methods that scale well to vectors of high dimension. We study the distribution of the sum of random variables constituting a Markov random field from the proposed family, analyze a random variable’s individual contribution to that sum through expected allocations, and establish stochastic orderings to assess a wide understanding of their behavior.

Suggested Citation

  • Côté, Benjamin & Cossette, Hélène & Marceau, Etienne, 2025. "Tree-structured Markov random fields with Poisson marginal distributions," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x25000132
    DOI: 10.1016/j.jmva.2025.105418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X25000132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2025.105418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x25000132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.