IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v207y2025ics0047259x2400109x.html
   My bibliography  Save this article

Semi-functional varying coefficient mode-based regression

Author

Listed:
  • Wang, Tao

Abstract

We propose estimating semi-functional varying coefficient regression based on the mode value through a kernel objective function, where the bandwidth included is treated as a tuning parameter to achieve efficiency and robustness. For estimation, functional principal component basis functions are utilized to approximate the slope function and functional predictor variable, while B-spline functions are employed to approximate the varying coefficient component. Under mild regularity conditions, the convergence rates of the resulting estimators for the unknown slope function and varying coefficient are established under various cases. To numerically estimate the proposed model, we recommend employing a computationally efficient mode expectation–maximization algorithm with the aid of a Gaussian kernel. The tuning parameters are selected using the mode-based Bayesian information criterion and cross-validation procedures. Built upon the generalized likelihood technique, we further develop a goodness-of-fit test to assess the constancy of varying coefficient functions and put forward a wild bootstrap procedure for estimating the corresponding critical values. The finite sample performance of the developed estimators is illustrated through Monte Carlo simulations and real data analysis related to the Tecator data. The results produced by the propounded method are compared favorably with those obtained from alternative estimation techniques.

Suggested Citation

  • Wang, Tao, 2025. "Semi-functional varying coefficient mode-based regression," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x2400109x
    DOI: 10.1016/j.jmva.2024.105402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X2400109X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x2400109x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.