IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v206y2025ics0047259x24001027.html
   My bibliography  Save this article

Alteration detection of tensor dependence structure via sparsity-exploited reranking algorithm

Author

Listed:
  • Ma, Li
  • Qin, Shenghao
  • Xia, Yin

Abstract

Tensor-valued data arise frequently from a wide variety of scientific applications, and many among them can be translated into an alteration detection problem of tensor dependence structures. In this article, we formulate the problem under the popularly adopted tensor-normal distributions and aim at two-sample correlation/partial correlation comparisons of tensor-valued observations. Through decorrelation and centralization, a separable covariance structure is employed to pool sample information from different tensor modes to enhance the power of the test. Additionally, we propose a novel Sparsity-Exploited Reranking Algorithm (SERA) to further improve the multiple testing efficiency. Such efficiency gain is achieved by incorporating a carefully constructed auxiliary tensor sequence to rerank the p-values. Besides the tensor framework, SERA is also generally applicable to a wide range of two-sample large-scale inference problems with sparsity structures, and is of independent interest. The asymptotic properties of the proposed test are derived and the algorithm is shown to control the false discovery at the pre-specified level. We demonstrate the efficacy of the proposed method through intensive simulations and two scientific applications.

Suggested Citation

  • Ma, Li & Qin, Shenghao & Xia, Yin, 2025. "Alteration detection of tensor dependence structure via sparsity-exploited reranking algorithm," Journal of Multivariate Analysis, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001027
    DOI: 10.1016/j.jmva.2024.105395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24001027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.