IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v206y2025ics0047259x24000915.html
   My bibliography  Save this article

A general approach for testing independence in Hilbert spaces

Author

Listed:
  • Gaigall, Daniel
  • Wu, Shunyao
  • Liang, Hua

Abstract

We generalize the projection correlation idea for testing independence of random vectors which is known as a powerful method in multivariate analysis. A universal Hilbert space approach makes the new testing procedures useful in various cases and ensures the applicability to high or even infinite dimensional data. We prove that the new tests keep the significance level under the null hypothesis of independence exactly and can detect any alternative of dependence in the limit, in particular in settings where the dimensions of the observations is infinite or tend to infinity simultaneously with the sample size. Simulations demonstrate that the generalization does not impair the good performance of the approach and confirm our theoretical findings. Furthermore, we describe the implementation of the new approach and present a real data example for illustration.

Suggested Citation

  • Gaigall, Daniel & Wu, Shunyao & Liang, Hua, 2025. "A general approach for testing independence in Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24000915
    DOI: 10.1016/j.jmva.2024.105384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24000915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.