IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v19y1986i1p189-200.html
   My bibliography  Save this article

On limiting spectral distribution of product of two random matrices when the underlying distribution is isotropic

Author

Listed:
  • Bai, Z. D.
  • Yin, Y. Q.
  • Krishnaiah, P. R.

Abstract

Let X be distributed independent of a nonnegative definite symmetric random matrix T, where X = [x1,...,xn]: p - n and x1,...,xn is a sample from an isotropic population and the second moments of the norm xi (i = 1,2,...,n) exist. In this paper, the authors prove that the limit of the spectral distribution of ST/n exists where S = XX'.

Suggested Citation

  • Bai, Z. D. & Yin, Y. Q. & Krishnaiah, P. R., 1986. "On limiting spectral distribution of product of two random matrices when the underlying distribution is isotropic," Journal of Multivariate Analysis, Elsevier, vol. 19(1), pages 189-200, June.
  • Handle: RePEc:eee:jmvana:v:19:y:1986:i:1:p:189-200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(86)90103-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deliang Dai & Yuli Liang, 2021. "High-Dimensional Mahalanobis Distances of Complex Random Vectors," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    2. Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Bai, Z.D. & Miao, Baiqi & Jin, Baisuo, 2007. "On limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 76-101, January.
    4. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:19:y:1986:i:1:p:189-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.