IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v18y1986i1p1-31.html
   My bibliography  Save this article

Third order asymptotic properties of maximum likelihood estimators for Gaussian ARMA processes

Author

Listed:
  • Taniguchi, Masanobu

Abstract

In this paper we investigate various third-order asymptotic properties of maximum likelihood estimators for Gaussian ARMA processes by the third-order Edgeworth expansions of the sampling distributions. We define a third-order asymptotic efficiency by the highest probability concentration around the true value with respect to the third-order Edgeworth expansion. Then we show that the maximum likelihood estimator is not always third-order asymptotically efficient in the class A3 of third-order asymptotically median unbiased estimators. But, if we confine our discussions to an appropriate class D ([subset of] A3) of estimators, we can show that appropriately modified maximum likelihood estimator is always third-order asymptotically efficient in D.

Suggested Citation

  • Taniguchi, Masanobu, 1986. "Third order asymptotic properties of maximum likelihood estimators for Gaussian ARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 1-31, February.
  • Handle: RePEc:eee:jmvana:v:18:y:1986:i:1:p:1-31
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(86)90055-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    2. Srivastava, V. K. & Maekawa, Koichi, 1995. "Efficiency properties of feasible generalized least squares estimators in SURE models under non-normal disturbances," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 99-121.
    3. Kano, Yutaka, 1998. "More Higher-Order Efficiency: Concentration Probability," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 349-366, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:18:y:1986:i:1:p:1-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.