IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v17y1985i2p127-147.html
   My bibliography  Save this article

Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions

Author

Listed:
  • Bock, M. E.

Abstract

Let X be a p-dimensional random vector with density f(||X-[theta]||) where [theta] is an unknown location vector. For p >= 3, conditions on f are given for which there exist minimax estimators [theta](X) satisfying ||Xt|| · ||[theta](X) - X||

Suggested Citation

  • Bock, M. E., 1985. "Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 17(2), pages 127-147, October.
  • Handle: RePEc:eee:jmvana:v:17:y:1985:i:2:p:127-147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(85)90075-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maruyama, Yuzo, 2003. "Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 274-283, February.
    2. Xu, Jian-Lun & Izmirlian, Grant, 2006. "Estimation of location parameters for spherically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 514-525, February.
    3. Fourdrinier, Dominique & Kortbi, Othmane & Strawderman, William E., 2008. "Bayes minimax estimators of the mean of a scale mixture of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 74-93, January.
    4. Ann Brandwein & Stefan Ralescu & William Strawderman, 1993. "Shrinkage estimators of the location parameter for certain spherically symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 551-565, September.
    5. Kuriki, Satoshi & Takemura, Akimichi, 2000. "Shrinkage Estimation towards a Closed Convex Set with a Smooth Boundary," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 79-111, October.
    6. Maruyama, Yazo & Takemura, Akimichi, 2008. "Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 50-73, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:17:y:1985:i:2:p:127-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.