IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v172y2019icp147-161.html
   My bibliography  Save this article

Nonparametric estimation of multivariate tail probabilities and tail dependence coefficients

Author

Listed:
  • Krupskii, Pavel
  • Joe, Harry

Abstract

We propose three methods for estimating the joint tail probabilities based on a d-variate copula with dimension d≥2. For the first two methods, we use two different tail expansions of the copula which are valid under mild regularity conditions. We estimate the coefficients of these expansions using the maximum likelihood approach with appropriate data beyond a threshold in the tail. For the third method, we propose a family of tail-weighted measures of multivariate dependence and use these measures to estimate the coefficients of the second tail expansion using regression. This expansion is then used to estimate the joint tail probabilities when the empirical probabilities cannot be used because of lack of data in the tail. The three proposed methods can also be used to estimate tail dependence coefficients of a multivariate copula. Simulation studies are used to indicate when the methods give more accurate estimates of the tail probabilities and tail dependence coefficients. We apply the proposed methods to analyze tail properties of a data set of financial returns.

Suggested Citation

  • Krupskii, Pavel & Joe, Harry, 2019. "Nonparametric estimation of multivariate tail probabilities and tail dependence coefficients," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 147-161.
  • Handle: RePEc:eee:jmvana:v:172:y:2019:i:c:p:147-161
    DOI: 10.1016/j.jmva.2019.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18301222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    2. Falk, Michael & Padoan, Simone A. & Wisheckel, Florian, 2019. "Generalized Pareto copulas: A key to multivariate extremes," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    3. Shyamalkumar, Nariankadu D. & Tao, Siyang, 2022. "t-copula from the viewpoint of tail dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:172:y:2019:i:c:p:147-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.