IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v15y1984i2p237-251.html
   My bibliography  Save this article

Scaling limits for point random fields

Author

Listed:
  • Burton, Robert M.
  • Waymire, Ed

Abstract

If X is a point random field on d then convergence in distribution of the renormalization C[lambda]X[lambda] - [alpha][lambda] as [lambda] --> [infinity] to generalized random fields is examined, where C[lambda] > 0, [alpha][lambda] are real numbers for [lambda] > 0, and X[lambda](f) = [lambda]-dX(f[lambda]) for f[lambda](x) = f(x/[lambda]). If such a scaling limit exists then C[lambda] = [lambda][theta]g([lambda]), where g is a slowly varying function, and the scaling limit is self-similar with exponent [theta]. The classical case occurs when [theta] = d/2 and the limit process is a Gaussian white noise. Scaling limits of subordinated Poisson (doubly stochastic) point random fields are calculated in terms of the scaling limit of the environment (driving random field). If the exponent of the scaling limit is [theta] = d/2 then the limit is an independent sum of the scaling limit of the environment and a Gaussian white noise. If [theta] d/2 the limit is Gaussian white noise. Analogous results are derived for cluster processes as well.

Suggested Citation

  • Burton, Robert M. & Waymire, Ed, 1984. "Scaling limits for point random fields," Journal of Multivariate Analysis, Elsevier, vol. 15(2), pages 237-251, October.
  • Handle: RePEc:eee:jmvana:v:15:y:1984:i:2:p:237-251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(84)90029-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:15:y:1984:i:2:p:237-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.