IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v151y2016icp54-68.html
   My bibliography  Save this article

Best estimation of functional linear models

Author

Listed:
  • Aletti, Giacomo
  • May, Caterina
  • Tommasi, Chiara

Abstract

Observations that are realizations of some continuous process are frequently found in science, engineering, economics, and other fields. In this paper, we consider linear models with possible random effects and where the responses are random functions in a suitable Sobolev space. In particular, the processes cannot be observed directly. By using smoothing procedures on the original data, both the response curves and their derivatives can be reconstructed, both as an ensemble and separately. From these reconstructed functions, one representative sample is obtained to estimate the vector of functional parameters. A simulation study shows the benefits of this approach over the common method of using information either on curves or derivatives. The main theoretical result is a strong functional version of the Gauss–Markov theorem. This ensures that the proposed functional estimator is more efficient than the best linear unbiased estimator (BLUE) based only on curves or derivatives.

Suggested Citation

  • Aletti, Giacomo & May, Caterina & Tommasi, Chiara, 2016. "Best estimation of functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 54-68.
  • Handle: RePEc:eee:jmvana:v:151:y:2016:i:c:p:54-68
    DOI: 10.1016/j.jmva.2016.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pigoli, Davide & Sangalli, Laura M., 2012. "Wavelets in functional data analysis: Estimation of multidimensional curves and their derivatives," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1482-1498.
    2. Laura M. Sangalli & Piercesare Secchi & Simone Vantini & Alessandro Veneziani, 2009. "Efficient estimation of three‐dimensional curves and their derivatives by free‐knot regression splines, applied to the analysis of inner carotid artery centrelines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 285-306, July.
    3. Stefano Baraldo & Francesca Ieva & Anna Maria Paganoni & Valeria Vitelli, 2013. "Outcome Prediction for Heart Failure Telemonitoring Via Generalized Linear Models with Functional Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 403-416, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    2. Pigoli, Davide & Sangalli, Laura M., 2012. "Wavelets in functional data analysis: Estimation of multidimensional curves and their derivatives," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1482-1498.
    3. B. Ettinger & S. Perotto & L. M. Sangalli, 2016. "Spatial regression models over two-dimensional manifolds," Biometrika, Biometrika Trust, vol. 103(1), pages 71-88.
    4. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    5. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    6. Hao, Siteng & Lin, Shu-Chin & Wang, Jane-Ling & Zhong, Qixian, 2024. "Dynamic modeling for multivariate functional and longitudinal data," Journal of Econometrics, Elsevier, vol. 239(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:151:y:2016:i:c:p:54-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.