IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v135y2015icp1-10.html
   My bibliography  Save this article

A sufficient condition for the convergence of the mean shift algorithm with Gaussian kernel

Author

Listed:
  • Aliyari Ghassabeh, Youness

Abstract

The mean shift (MS) algorithm is a non-parametric, iterative technique that has been used to find modes of an estimated probability density function (pdf). Although the MS algorithm has been widely used in many applications, such as clustering, image segmentation, and object tracking, a rigorous proof for its convergence is still missing. This paper tries to fill some of the gaps between theory and practice by presenting specific theoretical results about the convergence of the MS algorithm. To achieve this goal, first we show that all the stationary points of an estimated pdf using a certain class of kernel functions are inside the convex hull of the data set. Then the convergence of the sequence generated by the MS algorithm for an estimated pdf with isolated stationary points will be proved. Finally, we present a sufficient condition for the estimated pdf using the Gaussian kernel to have isolated stationary points.

Suggested Citation

  • Aliyari Ghassabeh, Youness, 2015. "A sufficient condition for the convergence of the mean shift algorithm with Gaussian kernel," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 1-10.
  • Handle: RePEc:eee:jmvana:v:135:y:2015:i:c:p:1-10
    DOI: 10.1016/j.jmva.2014.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14002644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
    2. Chen, Ting-Li & Fujisawa, Hironori & Huang, Su-Yun & Hwang, Chii-Ruey, 2016. "On the weak convergence and Central Limit Theorem of blurring and nonblurring processes with application to robust location estimation," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 165-184.
    3. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:135:y:2015:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.