IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v132y2014icp171-182.html
   My bibliography  Save this article

Smoothed and iterated bootstrap confidence regions for parameter vectors

Author

Listed:
  • Ghosh, Santu
  • Polansky, Alan M.

Abstract

The construction of confidence regions for parameter vectors is a difficult problem in the nonparametric setting, particularly when the sample size is not large. We focus on bootstrap ellipsoidal confidence regions. The bootstrap has shown promise in solving this problem, but empirical evidence often indicates that the bootstrap percentile method has difficulty in maintaining the correct coverage probability, while the bootstrap percentile-t method may be unstable, often resulting in very large confidence regions. This paper considers the smoothed and iterated bootstrap methods to construct the bootstrap percentile method ellipsoidal confidence region. The smoothed bootstrap method is based on a multivariate kernel density estimator. An optimal bandwidth matrix is established for the smoothed bootstrap procedure that reduces the coverage error of the bootstrap percentile method. We also provide an analytical adjustment to the nominal level to reduce the computational cost of the iterated bootstrap method. Simulations demonstrate that the methods can be successfully applied in practice.

Suggested Citation

  • Ghosh, Santu & Polansky, Alan M., 2014. "Smoothed and iterated bootstrap confidence regions for parameter vectors," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 171-182.
  • Handle: RePEc:eee:jmvana:v:132:y:2014:i:c:p:171-182
    DOI: 10.1016/j.jmva.2014.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Polansky, Alan M., 2001. "Bandwidth selection for the smoothed bootstrap percentile method," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 333-349, May.
    2. Guerra, Rudy & Polansky, Alan M. & Schucany, William R., 1997. "Smoothed bootstrap confidence intervals with discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 26(2), pages 163-176, December.
    3. Alan M. Polansky & William. R. Schucany, 1997. "Kernel Smoothing to Improve Bootstrap Confidence Intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 821-838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    2. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    3. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    4. Polansky, Alan M., 2001. "Bandwidth selection for the smoothed bootstrap percentile method," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 333-349, May.
    5. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
    6. Jan G. de Gooijer & Ao Yuan, 2011. "Kernel-Smoothed Conditional Quantiles of Correlated Bivariate Discrete Data," Tinbergen Institute Discussion Papers 11-011/4, Tinbergen Institute.
    7. Guerra, Rudy & Polansky, Alan M. & Schucany, William R., 1997. "Smoothed bootstrap confidence intervals with discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 26(2), pages 163-176, December.
    8. David M. Kaplan & Matt Goldman, 2013. "IDEAL Quantile Inference via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1315, Department of Economics, University of Missouri.
    9. Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Motoyama, Hitoshi & 元山, 斉 & Takahashi, Hajime & 高橋, 一, 2009. "Smoothed Versions of Statistical Functionals from a Finite Population," Discussion Papers 2005-05_v2, Graduate School of Economics, Hitotsubashi University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:132:y:2014:i:c:p:171-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.