IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v130y2014icp118-133.html
   My bibliography  Save this article

Specification test for Markov models with measurement errors

Author

Listed:
  • Kim, Seonjin
  • Zhao, Zhibiao

Abstract

Most existing works on specification testing assume that we have direct observations from the model of interest. We study specification testing for Markov models based on contaminated observations. The evolving model dynamics of the unobservable Markov chain is implicitly coded into the conditional distribution of the observed process. To test whether the underlying Markov chain follows a parametric model, we propose measuring the deviation between nonparametric and parametric estimates of conditional regression functions of the observed process. Specifically, we construct a nonparametric simultaneous confidence band for conditional regression functions and check whether the parametric estimate is contained within the band.

Suggested Citation

  • Kim, Seonjin & Zhao, Zhibiao, 2014. "Specification test for Markov models with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 118-133.
  • Handle: RePEc:eee:jmvana:v:130:y:2014:i:c:p:118-133
    DOI: 10.1016/j.jmva.2014.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    2. Zhibiao Zhao, 2008. "Parametric and nonparametric models and methods in financial econometrics," Papers 0801.1599, arXiv.org, revised Mar 2008.
    3. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
    4. Aït-Sahalia, Yacine & Fan, Jianqing & Peng, Heng, 2009. "Nonparametric Transition-Based Tests for Jump Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1102-1116.
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    7. Zhao, Zhibiao, 2011. "Nonparametric model validations for hidden Markov models with applications in financial econometrics," Journal of Econometrics, Elsevier, vol. 162(2), pages 225-239, June.
    8. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    9. Gao, Jiti & King, Maxwell, 2004. "Adaptive Testing In Continuous-Time Diffusion Models," Econometric Theory, Cambridge University Press, vol. 20(5), pages 844-882, October.
    10. Hong, Yongmiao & White, Halbert, 1995. "Consistent Specification Testing via Nonparametric Series Regression," Econometrica, Econometric Society, vol. 63(5), pages 1133-1159, September.
    11. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
    12. Yingying Li & Zhiyuan Zhang & Xinghua Zheng, 2013. "Volatility Inference in the Presence of Both Endogenous Time and Microstructure Noise," Papers 1303.5809, arXiv.org.
    13. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    14. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhibiao, 2011. "Nonparametric model validations for hidden Markov models with applications in financial econometrics," Journal of Econometrics, Elsevier, vol. 162(2), pages 225-239, June.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    4. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    5. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    6. Jacod, Jean & Li, Yingying & Zheng, Xinghua, 2019. "Estimating the integrated volatility with tick observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 80-100.
    7. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    8. Mykland, Per A. & Zhang, Lan & Chen, Dachuan, 2019. "The algebra of two scales estimation, and the S-TSRV: High frequency estimation that is robust to sampling times," Journal of Econometrics, Elsevier, vol. 208(1), pages 101-119.
    9. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    10. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
    11. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    12. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    13. repec:wyi:journl:002142 is not listed on IDEAS
    14. Gao, Jiti & Casas, Isabel, 2008. "Specification testing in discretized diffusion models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 131-140, November.
    15. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    16. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    17. Gao, Jiti & Hong, Yongmiao, 2007. "Central limit theorems for weighted quadratic forms of dependent processes with applications in specification testing," MPRA Paper 11977, University Library of Munich, Germany, revised Dec 2007.
    18. Monsalve-Cobis, Abelardo & González-Manteiga, Wenceslao & Febrero-Bande, Manuel, 2011. "Goodness-of-fit test for interest rate models: An approach based on empirical processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3073-3092, December.
    19. Zu, Yang & Boswijk, H. Peter, 2017. "Consistent nonparametric specification tests for stochastic volatility models based on the return distribution," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 53-75.
    20. Zu, Y., 2015. "Consistent nonparametric specification tests for stochastic volatility models based on the return distribution," Working Papers 15/02, Department of Economics, City University London.
    21. Zu, Yang, 2015. "Nonparametric specification tests for stochastic volatility models based on volatility density," Journal of Econometrics, Elsevier, vol. 187(1), pages 323-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:130:y:2014:i:c:p:118-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.