IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v12y1982i1p95-122.html
   My bibliography  Save this article

Recurrence and ergodicity of diffusions

Author

Listed:
  • Bhattacharya, R. N.
  • Ramasubramanian, S.

Abstract

This article attempts to lay a proper foundation for studying asymptotic properties of nonhomogeneous diffusions, extends earlier criteria for transience, recurrence, and positive recurrence, and provides sufficient conditions for the weak convergence of a shifted nonhomogeneous diffusion to a limiting stationary homogenous diffusion. A functional central limit theorem is proved for the class of positive recurrent homogeneous diffusions. Upper and lower functions for positive recurrent nonhomogeneous diffusions are also studied.

Suggested Citation

  • Bhattacharya, R. N. & Ramasubramanian, S., 1982. "Recurrence and ergodicity of diffusions," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 95-122, March.
  • Handle: RePEc:eee:jmvana:v:12:y:1982:i:1:p:95-122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(82)90086-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
    2. Takashi Kamihigashi & John Stachurski, 2014. "Stability Analysis for Random Dynamical Systems in Economics," Discussion Paper Series DP2014-35, Research Institute for Economics & Business Administration, Kobe University.
    3. Ben Hambly & Nikolaos Kolliopoulos, 2018. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Papers 1811.08808, arXiv.org, revised Feb 2020.
    4. Basak, Gopal K. & Hu, Inchi & Wei, Ching-Zong, 1997. "Weak convergence of recursions," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 65-82, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:12:y:1982:i:1:p:95-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.