IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v111y2012icp59-65.html
   My bibliography  Save this article

Asymptotically minimax bias estimation of the correlation coefficient for bivariate independent component distributions

Author

Listed:
  • Shevlyakov, G.L.
  • Smirnov, P.O.
  • Shin, V.I.
  • Kim, K.

Abstract

For bivariate independent component distributions, the asymptotic bias of the correlation coefficient estimators based on principal component variances is derived. This result allows to design an asymptotically minimax bias (in the Huber sense) estimator of the correlation coefficient, namely, the trimmed correlation coefficient, for contaminated bivariate normal distributions. The limit cases of this estimator are the sample, median and MAD correlation coefficients, the last two simultaneously being the most B- and V-robust estimators. In contaminated normal models, the proposed estimators dominate both in bias and in efficiency over the sample correlation coefficient on small and large samples.

Suggested Citation

  • Shevlyakov, G.L. & Smirnov, P.O. & Shin, V.I. & Kim, K., 2012. "Asymptotically minimax bias estimation of the correlation coefficient for bivariate independent component distributions," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 59-65.
  • Handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:59-65
    DOI: 10.1016/j.jmva.2012.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1200111X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yanyuan & Genton, Marc G., 2001. "Highly Robust Estimation of Dispersion Matrices," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 11-36, July.
    2. Shevlyakov, Georgy L. & Vilchevski, Nikita O., 2002. "Minimax variance estimation of a correlation coefficient for [var epsilon]-contaminated bivariate normal distributions," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 91-100, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psaradakis, Zacharias & Vávra, Marián, 2014. "On testing for nonlinearity in multivariate time series," Economics Letters, Elsevier, vol. 125(1), pages 1-4.
    2. Lanius, Vivian & Gather, Ursula, 2010. "Robust online signal extraction from multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 966-975, April.
    3. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    4. Reisen, Valdério Anselmo & Sgrancio, Adriano Marcio & Lévy-Leduc, Céline & Bondon, Pascal & Monte, Edson Zambon & Aranda Cotta, Higor Henrique & Ziegelmann, Flávio Augusto, 2019. "Robust factor modelling for high-dimensional time series: An application to air pollution data," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 842-852.
    5. Lanius, Vivian & Gather, Ursula, 2007. "Robust online signal extraction from multivariate time series," Technical Reports 2007,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Dürre, Alexander & Vogel, Daniel & Fried, Roland, 2015. "Spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 89-105.
    7. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    8. Tarr, G. & Müller, S. & Weber, N.C., 2016. "Robust estimation of precision matrices under cellwise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 404-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:59-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.