IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v111y2012icp350-367.html
   My bibliography  Save this article

Pattern recognition based on canonical correlations in a high dimension low sample size context

Author

Listed:
  • Tamatani, Mitsuru
  • Koch, Inge
  • Naito, Kanta

Abstract

This paper is concerned with pattern recognition for 2-class problems in a High Dimension Low Sample Size (hdlss) setting. The proposed method is based on canonical correlations between the predictors X and responses Y. The paper proposes a modified version of the canonical correlation matrix ΣX−1/2ΣXYΣY−1/2 which is suitable for discrimination with class labels Y in a hdlss context. The modified canonical correlation matrix yields ranking vectors for variable selection, a discriminant direction and a rule which is essentially equivalent to the naive Bayes rule. The paper examines the asymptotic behavior of the ranking vectors and the discriminant direction and gives precise conditions for hdlss consistency in terms of the growth rates of the dimension and sample size. The feature selection induced by the discriminant direction as ranking vector is shown to work efficiently in simulations and in applications to real hdlss data.

Suggested Citation

  • Tamatani, Mitsuru & Koch, Inge & Naito, Kanta, 2012. "Pattern recognition based on canonical correlations in a high dimension low sample size context," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 350-367.
  • Handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:350-367
    DOI: 10.1016/j.jmva.2012.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koch, Inge & Naito, Kanta, 2010. "Prediction of multivariate responses with a selected number of principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1791-1807, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:350-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.