IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v105y2012i1p68-84.html
   My bibliography  Save this article

One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic

Author

Listed:
  • Li, Hongfei
  • Calder, Catherine A.
  • Cressie, Noel

Abstract

We consider one-step estimation of parameters that represent the strength of spatial dependence in a geostatistical or lattice spatial model. While the maximum likelihood estimators (MLE) of spatial dependence parameters are known to have various desirable properties, they do not have closed-form expressions. Therefore, we consider a one-step alternative to maximum likelihood estimation based on solving an approximate (i.e., one-step) profile likelihood estimating equation. The resulting approximate profile likelihood estimator (APLE) has a closed-form representation, making it a suitable alternative to the widely used Moran’s I statistic. Since the finite-sample and asymptotic properties of one-step estimators of covariance-function parameters have not been studied rigorously, we explore these properties for the APLE of the spatial dependence parameter in the simultaneous autoregressive (SAR) model. Motivated by the APLE statistic’s closed from, we develop exploratory spatial data analysis tools that capture regions of local clustering or the extent to which the strength of spatial dependence varies across space. We illustrate these exploratory tools using both simulated data and observed crime rates in Columbus, OH.

Suggested Citation

  • Li, Hongfei & Calder, Catherine A. & Cressie, Noel, 2012. "One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 68-84.
  • Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:68-84
    DOI: 10.1016/j.jmva.2011.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11001655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2011.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genton, Mark G. & Ruiz-Gazen, Anne, 2009. "Visualizing Influential Observations in Dependent Data," TSE Working Papers 09-051, Toulouse School of Economics (TSE).
    2. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    3. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    2. Kirillov, Andrew, 2021. "A study on spatial autocorrelation: Case of Russian regional inflation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 5-22.
    3. Anjana Wijayawardhana & David Gunawan & Thomas Suesse, 2024. "A Marginal Maximum Likelihood Approach for Hierarchical Simultaneous Autoregressive Models with Missing Data," Mathematics, MDPI, vol. 12(23), pages 1-16, December.
    4. Suesse, Thomas, 2018. "Marginal maximum likelihood estimation of SAR models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 98-110.
    5. Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
    6. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    2. Yang, Zhenlin, 2010. "A robust LM test for spatial error components," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 299-310, September.
    3. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    4. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    5. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    6. Jungyoon Lee & Peter M Robinson, 2018. "Adaptive Inference on Pure Spatial Models," STICERD - Econometrics Paper Series 596, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. Yukiko Abe & Mizuki Kawabata & Yuki Shibatsuji, 2019. "Spatial Clustering Patterns of Children in Single-Mother Households in Japan," Keio-IES Discussion Paper Series 2019-021, Institute for Economics Studies, Keio University.
    8. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    9. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    10. Zhengyu Zhang, 2013. "A Pairwise Difference Estimator for Partially Linear Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(2), pages 176-194, June.
    11. Baltagi, Badi H. & Yang, Zhenlin, 2013. "Heteroskedasticity and non-normality robust LM tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 725-739.
    12. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    13. Guo, Penghui & Liu, Lihu, 2011. "Robust Test for Spatial Error Model:Considering Changes of Spatial Layouts and Distribution Misspecification," MPRA Paper 38050, University Library of Munich, Germany, revised Apr 2012.
    14. Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
    15. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    16. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    17. Jeong, Hanbat & Lee, Lung-fei, 2020. "Spatial dynamic models with intertemporal optimization: Specification and estimation," Journal of Econometrics, Elsevier, vol. 218(1), pages 82-104.
    18. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    19. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    20. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:68-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.