IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i4p828-846.html
   My bibliography  Save this article

-Consistent robust integration-based estimation

Author

Listed:
  • Jun, Sung Jae
  • Pinkse, Joris
  • Wan, Yuanyuan

Abstract

We propose a new robust estimator of the regression coefficients in a linear regression model. The proposed estimator is the only robust estimator based on integration rather than optimization. It allows for dependence between errors and regressors, is -consistent, and asymptotically normal. Moreover, it has the best achievable breakdown point of regression invariant estimators, has bounded gross error sensitivity, is both affine invariant and regression invariant, and the number of operations required for its computation is linear in n. An extension would result in bounded local shift sensitivity, also.

Suggested Citation

  • Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2011. "-Consistent robust integration-based estimation," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 828-846, April.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:4:p:828-846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(11)00004-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    2. Zinde-Walsh, Victoria, 2002. "Asymptotic Theory For Some High Breakdown Point Estimators," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1172-1196, October.
    3. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    4. Krasker, William S, 1980. "Estimation in Linear Regression Models with Disparate Data Points," Econometrica, Econometric Society, vol. 48(6), pages 1333-1346, September.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Hossjer, O. & Croux, C. & Rousseeuw, P. J., 1994. "Asymptotics of Generalized S-Estimators," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 148-177, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cizek, P., 2009. "Generalized Methods of Trimmed Moments," Discussion Paper 2009-25, Tilburg University, Center for Economic Research.
    2. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    3. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    4. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    5. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    6. Franco Peracchi, 1988. "Robust Estimators of Regression," UCLA Economics Working Papers 476, UCLA Department of Economics.
    7. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    8. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    9. Cathy W. S. Chen & Mike K. P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Springer, vol. 67(1), pages 96-124, March.
    10. Lee, Dong Jin & Kim, Tae-Hwan & Mizen, Paul, 2021. "Impulse response analysis in conditional quantile models with an application to monetary policy," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    11. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    12. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    13. Tae-Hwan Kim & Halbert White, 2003. "Estimation, Inference, And Specification Testing For Possibly Misspecified Quantile Regression," Advances in Econometrics, in: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, pages 107-132, Emerald Group Publishing Limited.
    14. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    15. Erik Figueiredo & Luiz Renato Lima & Gianluca Orefice, 2016. "Migration and Regional Trade Agreements: A (New) Gravity Estimation," Review of International Economics, Wiley Blackwell, vol. 24(1), pages 99-125, February.
    16. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    17. Pavel Čížek, 2013. "Reweighted least trimmed squares: an alternative to one-step estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 514-533, September.
    18. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    19. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    20. Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2021. "Smoothing Quantile Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 338-357, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:4:p:828-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.